Structural Modification of Single-Layer Graphene Under Laser Irradiation Featured by Micro-Raman Spectroscopy

نویسندگان

  • Yurii Stubrov
  • Andrii Nikolenko
  • Viktor Strelchuk
  • Sergii Nedilko
  • Vitalii Chornii
چکیده

Confocal micro-Raman spectroscopy is used as a sensitive tool to study the nature of laser-induced defects in single-layer graphene. Appearance and drastic intensity increase of D- and D' modes in the Raman spectra at high power of laser irradiation is related to generation of structural defects. Time- and power-dependent evolution of Raman spectra is studied. The dependence of relative intensity of defective D- and D' bands is analyzed to relate the certain types of structural defects. The surface density of structural defects is estimated from the intensity ratio of D- and G bands using the D-band activation model. Unusual broadening of the D band and splitting of the G band into G- and G+ components with redistribution of their intensities is observed at high laser power and exposition. Position of the G+ band is discussed in relation with nonuniform doping of graphene with charge impurities. Simultaneous presence in the Raman spectra of heavily irradiated graphene of rather narrow G band and broaden D band is explained by coexistence within the Raman probe of more and less damaged graphene areas. This assumption is additionally confirmed by confocal Raman mapping of the heavily irradiated area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature dependence of the Raman spectra of graphene and graphene multilayers.

We investigated the temperature dependence of the frequency of G peak in the Raman spectra of graphene on Si/SiO2 substrates. The micro-Raman spectroscopy was carried out under the 488 nm laser excitation over the temperature range from -190 to +100 degrees C. The extracted value of the temperature coefficient of G mode of graphene is chi = -0.016 cm-1/ degrees C for the single layer and chi = ...

متن کامل

Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film

Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...

متن کامل

Probing strain-induced electronic structure change in graphene by Raman spectroscopy.

Two-phonon Raman scattering in graphitic materials provides a distinctive approach to probing the material's electronic structure through the spectroscopy of phonons. Here we report studies of Raman scattering of the two-dimensional mode of single-layer graphene under uniaxial stress and which implicates two types of modification of the low-energy electronic structure of graphene: a deformation...

متن کامل

pH Effect on the Size of Graphene Quantum dot Synthesized by Using Pulse Laser Irradiation

In this study graphene oxide (GO) was synthesized by using Hummer’s method. Low dimension graphene quantum dot nanoparticles (GQDs) were synthesized using pulse laser irradiation. Fourier Transform-Infrared Spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) spectroscopy and photoluminescence (PL) analysis were applied to study the GQDs characteristic. Scanning electron microscopy illustrated the...

متن کامل

Modification of the structural and electrical properties of graphene layers by Pt adsorbates

The properties of graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of platinum (Pt) metal on exfoliated single, bi- and trilayer graphene and on chemical vapor deposition-grown single-layer graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that Pt affects the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017